1、垂直方向:r=a(1-sinθ)或r=a(1+sinθ)(a>0)
2、勒内·笛卡尔(法语:RenéDescartes,也译作笛卡儿;1596年3月31日-1650年2月11日),法国著名哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。
3、高中数学难点突破|立体几何中最值问题全梳理
4、水平方向:r=a(1-cosθ)或r=a(1+cosθ)(a>0)
5、许兴华——高一数学中的对数与对数函数学习指导
6、睡梦中,他好像看见蜘蛛还在爬,离两边墙的距离也是不断地在变化。。。他好像悟出了什么,大梦醒来的笛卡尔茅塞顿开:要是知道蜘蛛和两边墙之间的距离关系,不就能确定蜘蛛的位置吗?确定了位置后,自然就能算出蜘蛛走的距离了。于是,他郑重地写下了一条定理:在互相垂直的两条直线下,一个点可以用到这两条直线的距离,也就是两个数来表示,这个点的位置就被确定了--(X,Y)。
7、这个发现在我们现在看来毫不稀奇,那不就是坐标点吗?了不起的是他第一个想到,如今通过系统的教育传输给了我们。有了这个理论基础,人类才会发明三维坐标(经度,纬度,海拔)的GPS定位系统。现在看看是个白菜化的高科技,反正我的手表里就有一个这样的系统,但是没有笛卡尔当时的胡思乱想那就不知要往后推多少代了。
8、根据上面的记述,1650年的时候克里斯汀公主已经在王位上坐了18年了,事实上克里斯汀生于1626年,1632年她老爹阵亡的时候以假定继承人的身份继承了王位。
9、在人类的数学史上,法国的笛卡尔占有重要的位置。他对数学的重大贡献,是他发现了一种新的数学方法,把几何和代数这两门独立发展的数学学科结合成一门新的独立分支——解析几何。所以,人们把笛卡尔称作是解析几何之父。(平面直角坐标系笛卡尔的故事)。
10、与x轴平行的直线上的点纵坐标相同,横坐标不同。
11、事实上,将两个三次方替换成其他奇数也可以得到新的心形曲线,但他们长得都不太好看。
12、初中与高中数学衔接教材(上)ooo全面完整版
13、1619年,笛卡尔所在军队驻扎在多瑙河旁。11月的一天,他因着凉而躺在了床上,无所事事的他又想起了那个折磨他的问题。
14、有一天,笛卡尔(1596—16法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如也可以用空间中的一个点P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。
15、1650年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。
16、国王不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。拿到信的克里斯汀立即明白了恋人的意图,找来纸和笔,着手把方程图形画了出来,一颗心形图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。
17、(数学故事)为何2月只有28天?3位数学家与8位帝后的故事
18、笛卡尔是二元论的代表,留下名言“我思故我在”(或译为“思考是唯一确定的存在”),提出了“普遍怀疑”的主张,是欧洲近代哲学的奠基人之黑格尔称他为“近代哲学之父”。
19、如图在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(0),(0),(2),(2)…根据这个规律,第2018个点的坐标为 .
20、笛卡尔的这个发明可真了不起,一下子把代数和几何这两个几千年来互相独立的学科给统一了起来,从而诞生了一门新的数学——解析几何,也为后来牛顿和莱布尼兹发明微积分打下了基础。
21、因此要灭除这个“邪恶天才”,笛卡尔在完全解除了他与世界的所有联系后,发现一个观点是可以确定的:我是一个有思想的东西。
22、平面直角坐标系微课已经上线啦!你学得怎么样?还记得某矿泉水广告中那颤颤巍巍的老人吗?
23、心形线的故事究竟几分是真几分是假,还是留给大家自己判断吧。
24、利用刚才的分析方式可以迅速的画出三个点,不过这三个点的坐标都不是那么容易求出,我们需要仅仅抓住解题的基础:使用横着和竖着的线段来解决问题。我们以D1为例来说明如何求解。点D1靠近C点,所以我们要构造以CD1为一边的直角三角形来求解。如下图所示:
25、1637年,笛卡尔发表了巨作«方法论»。这本专门研究与讨论西方治学方法的书,提供了许多正确的见解与良好的建议,对于后来的西方学术发展,起了很大的贡献。为了显示新方法的优点与效果,以及对他个人在科学研究方面的帮助,在«方法论»的附录中,他增添了另外一本书«几何»。
26、他的父亲算个小贵族,如同帕斯卡父亲一样是个为国王服务的议会法官。在笛卡尔幼年时外出为官,后再娶了一个名门闺秀。所以笛卡尔从小就是他外婆带大的。而父亲为他的教育成长提供了充实的经济基础,使得他能随性而学,不用担心以后的生计问题。
27、在物理学方面,笛卡尔也有所建树。他在《屈光学》中首次对光的折射定律提出了理论论证。他还解释了人的视力失常的原因,并设计了矫正视力的透镜。力学上笛卡尔则发展了伽利略运动相对性的理论,强调了惯性运动的直线性。
28、国王去世后,克里斯汀继承王位,登基后,她便立刻派人去法国寻找心上人的下落,收到的却是笛卡尔去世的消息,留下了一个永远的遗憾……
29、李政道和杨振宁都说过类似的一句话:“物理的尽头是数学,数学的尽头是哲学,哲学的尽头是神学”。这是一个由唯物主义到唯心主义的心灵历程。和帕斯卡一样,笛卡尔从物理到数学到哲学最后与宗教又沾上了边。
30、1596年3月31日,法国的一个小镇,天降祥瑞,笛卡尔诞生了。虽说伟人命硬,一岁时母亲就去世,但好歹小笛卡尔也算个“富二代”外加“官二代”。他老爸作为议会议员和地方法院法官还是很有点钱的。当然,仅仅有这些还不够,最重要的是,他老爸还很有眼光,注重对笛卡尔的培养,一直让他上最好的贵族学校,接受最好的教育。笛卡尔也很替他老爸争气,无论是文学、神学、医学、哲学、法学、历史、物理学、数学…..他都学的样样精通,堪称学霸级风云人物。而他的最爱,居然是让许多人都头疼的数学!
31、上面的三个方面都是建立在已知点的坐标基础上求线段长,直角坐标系的好处是建立线段长和坐标之间的相互转化关系,所以很多时候我们还需要利用线段长来求坐标。
32、如图所示,利用上述线段长的求法,设点B(x,1),
33、有一天法国哲学家、数学家笛卡尔卧病在床。尽管病情很重,但他还在反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组数挂上钩,怎样才能把点和数联系起来呢?突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的表演使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,蜘蛛的位置可以确定,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。同样道理,用一组数(x,y)可以表示平面上的一个点,平面上的一个点也可以用一组有序实数对来表示,这就是坐标系的雏形。
34、(数学故事)数学文化|《九章算术》第5讲数学江湖中的独孤九剑
35、1671年,牛顿在笛卡尔平面直角坐标系的基础上,又发明了另外一种坐标——极坐标。极坐标在航海,航天上有非常巨大的用途。如图先画一些等距离的圆,以这些圆的公共圆心O为“极点”,规定向右的射线Ox为“极轴”,则这个极坐标系平面内的任意一个点M可以用两个有序数对——极坐标M(ρ,θ)来唯一确定。其中ρ表示点M到极点O的距离OM的长度,θ(0≤θ)表示以极轴Ox为始边,逆时针旋转后∠MOx的夹角大小。请同学们自建极坐标,在极坐标内描出一下各点,体会一下极坐标的妙处。
36、水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)
37、平面直角坐标系的建立诞生了新的数学研究领域——解析几何。平面直角坐标系是数形结合的产物,是数学发展史上的一次飞跃。在中学阶段是学生数形结合,学习函数,研究函数图象的有效途径,为了更好的开好函数学习的头从以下几个方面进行专题研讨。
38、在直角坐标系中有点AB(0),试在坐标系中找一个点C,使得以点O、A、B、C为顶点的四边形为平行四边形。
39、笛卡尔强调思想是不可怀疑的这个出发点,对此后的欧洲哲学产生了重要的影响。我思故我在所产生的争议在于所谓的上帝存在及动物一元论(黑猩猩、章鱼、鹦鹉、海豚、大象等等都证实有智力),而怀疑的主要思想,确实对研究方面很有贡献。
40、(数学之美)匪夷所思!一个中学生课上开了个玩笑,就能震动整个国家
41、由此,笛卡尔第一步认为怀疑就是出发点,感官知觉的知识是可以被怀疑的,我们并不能信任我们的感官。所以他不会说“我看故我在”、“我听故我在”。从这里他悟出一个道理:我们所不能怀疑的是“我们的怀疑”。
42、勒内·笛卡尔(ReneDescartes,公元1596年3月31日—公元1650年2月11日,拉丁名:RenatusCartesius),出生于法国安德尔-卢瓦尔省的图赖讷拉海(现改名为笛卡尔以纪念),逝世于瑞典斯德哥尔摩,法国著名哲学家、物理学家、数学家、神学家。
43、现代有人甚至认为她是女同性恋者,其中一个理据是她喜欢穿着男人衣服,或在服装上同时展现男性和女性风格──但克里斯蒂娜说穿着男装鞋子是为了方便。
44、他曾经说过:这年头什么也靠不住,只有自己靠自己,简称:我。。。靠!
45、大学你适合读数学专业吗?北京某大学老师为你提示数学专业的秘密!(上)
46、国王看不懂,以为这个方程里隐藏着两个人不可告人的秘密,便把全城的数学家召集到皇宫,但是没有人能解开这个函数式。他不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。
47、 垂直方向:ρ=a(1-sinθ)或ρ=a(1+sinθ)(a>0)
48、下面我们就深入了解一下点的坐标和线段长之间的联系。
49、(数学之美)匪夷所思!一个中学生课上开了个玩笑,就能震动整个国家
50、垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)
51、后来,由这样两两互相垂直的直线所组成的坐标系,就被人们称之为笛卡尔坐标系。
52、700分以上学霸激增!2020年高考哪个省最强?
53、和女孩道别后,笛卡尔渐渐忘却了这件事,依旧每天坐在街头写写画画。
54、(震惊)一所县城中学刷屏,11人超过700分!凌晨校园照震撼无数家长!
55、笛卡尔分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡尔在数学史上的.地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。
56、前面两个点虽说有同学可以直接看出,但是我们要清楚解决的方法其实就是例题一的做法。第三个点我们也可以通过证明△AON≌△BCM来求解。
57、笛卡尔对这只蜘蛛感兴趣,是因为他这时正思索着用代数方法来解决几何完体,但遇到了一个困难,便是几何中的点如何才能用代数中的几个数表示出来呢?晚上,他心中充满极大的兴奋,带着愉快而又焦急的心情去入睡,使得他接连做噩梦,头脑久久不能平静。凌晨,想着这只悬在半空中的蜘蛛,沉思中的笛卡尔豁然开朗:能不能用两面墙的交线及墙与天花板的交线,来确定它的空间位置呢?
58、另外,心神交感论也是笛卡尔在身心关系上二元论的又一典型表现,他认为,人的肉体是由物质实体构成的,人的心灵是由精神实体构成的。心灵和人体即可以相互影响、互为因果、相互作用。
59、(数学之美)你从没见过的数学图形!让孩子长长见识!
60、(数学故事)原来金庸的武侠江湖也有这么多数学故事
61、 小公主的数学在笛卡尔的悉心指导下突飞猛进,笛卡尔向她介绍了自己研究的新领域--直角坐标系。每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。
62、1619年,笛卡尔在多瑙河德国南部的一座小城--诺伊堡的军营。11月10日,白天,笛卡尔生病了,他遵照医生的嘱咐,躺在床上休息。突然,笛卡尔眼睛一亮,原来正在天花板上爬来爬去的一只蜘蛛引起了他的注意。这只蜘蛛在常人的眼里或许是平常得不能再平常了,它正忙着在天花板靠近墙角的地方结网,它忽而沿着墙面爬上爬下,忽而顺着吐出丝的方向在空中缓缓移动。
63、笛卡尔对数学最重要的贡献是创立了解析几何。笛卡尔成功地将当时完全分开的代数和几何学联系到了一起。在他的著作《几何》中,笛卡尔向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。
64、2020年人教版高中数学新教材总体介绍利用导数研究不等式问题
65、通过它,代数与几何可以结合起来,也就是日后笛卡尔创立的解析几何学的雏形。
66、公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了他研究的新领域——直角坐标系。
67、不能说笛卡尔的身世是非常幸运的,因为和帕斯卡一样他也经历了人生四大悲苦之一。在他婴儿时生母就患肺结核去世,而他也受到传染,造成体弱多病。
68、那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。
69、一个宁静的午后,笛卡尔照例坐在街头,沐浴在阳光中研究数学问题。他如此沉溺于数学世界,身边过往的人群,喧闹的车马队伍。都无法对他造成干扰。
70、在直角坐标系中有点AB(-2)、C(-1),试在坐标系中找一个点D,使得以点A、B、C、D为顶点的四边形为平行四边形。
71、2021届考生必看:一轮复习4大方法+30则经验总结+5大坏习惯!
72、做这类题目的时候关键要画图,要通过线段长来体现坐标,更重要的是由线段长求坐标有时需要讨论。线段平行于y轴的例子我就不再举了。特别强调的是:例题一是我们解决这一章所有问题的基础,就是所有的问题都必须转化为横着和竖着的线段来求解。
73、从此,他便当上了公主的数学老师。公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了他研究的新领域——直角坐标系。
74、(高考百日冲刺系列.数学全集)第1集~第23集合集(许兴华数学)
75、必须将每个问题分成若干个简单的部分来处理;
76、笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他日夜思念的还是街头偶遇的那张温暖的笑脸。在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。这最后一封信上没有写一句话,只有一个方程:r=a(1-sine)。
77、专家田刚,朱华伟等学者热议中国数学教育的困境与出路ooo从取消高考选择题改起!)
78、然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。
79、陈煜——2020年全国高中数学联赛加试题的解答
80、在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。这最后一封信上没有写一句话,只有一个方程:r=a(1-sinθ)。
81、事实上,笛卡尔和克里斯蒂娜的确有过交情。不过,笛卡尔是1649年10月4日应克里斯蒂娜邀请才来到的瑞典,并且当时克里斯蒂娜已经成为了瑞典女王。并且,笛卡尔与克里斯蒂娜谈论的主要是哲学问题。有资料记载,由于克里斯蒂娜女王时间安排很紧,笛卡尔只能在早晨五点与她探讨哲学。天气寒冷加上过度操劳让笛卡尔不幸患上肺炎,这才是笛卡尔真正的死因。
82、求点的坐标就是求对应的横、竖线段的长,然后考虑象限确定符号。
83、几天后,他意外地接到通知,国王聘请他做小公主的数学老师。满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他看到前几天在街头偶遇的女孩子。从此,他当上了公主的数学老师。
84、原子不怕冷同学在博文中介绍了一种更漂亮的心形:
85、其人对事实的认知可能是错误的甚至虚构的,而且我们永远无法确定其真相。
86、高中数学及中学教育优秀文章选读(许兴华数学)
87、(高中数学)利用函数表达式确认函数图像的这五大技巧,你都掌握了吗?
88、这个方程里包含了一个三角函数sinθ,称作正弦(Sine),是直角三角形对边与斜边的比值。这个词最早出现于十五世纪一本在欧洲很火的阿拉伯数学家著作«论各种三角形»。
89、在心理学方面,笛卡尔也是有所贡献的。他的观点和重大发现,对后来心理学颇有影响。他是近代二元论和唯心主义理论著名的代表。他的反射和反射弧的重大发现,为“动物是机器”的论断提供了重要依据。并提出,反应----刺激的假设。
90、火了!轰动清华!开学典礼上发言的新生代表到底什么来头?太优秀了吧!
91、配合九年级秋季培优的《沙场秋点兵》近期开始修订,需要的请提前联系。同时希望大家把对去年使用《沙场秋点兵》的建议给我,争取今年打造更好的精品。