1、让我们首先考虑,“所有自含集合的集合”(thesetofallsetsthatcontainthemselvesaselements),称之为“A”。
2、因此,在研究关于线段的几何学中,我们分析在一个平面中,所有线段之集合的属性。而这个集合的构成元素(即,线段),它们本身也是集合。
3、罗素悖论之所以称为是悖论,是因为它违反了形式逻辑中的矛盾律:矛盾律又称不矛盾律。它通常被表述为A不是非A,或A不能既是B又不是B。要求在同一思维过程中,对同一对象不能同时作出两个矛盾的判断,即不能既肯定它,又否定它。在传统逻辑里 ,矛盾律首先是作为事物规律提出来的,意为任一事物不能同时既具有某属性又不具有某属性。它作为思维规律,则是任一命题不能既真又不真。在罗素悖论中,罗素集R既属于自身又不属于自身,便是违反了矛盾律。
4、柏拉图(Plato, 公元前427 — 公元前347) 曾经提出:“迫使灵魂用抽象的数来进行推理, 而厌弃在辩论中引入可见的和可捉摸的现象”。亚里士多德(Aristotle, 公元前384 —公元前322) 认为秩序和对称是美的主要因素, 但二者都可以在数学中找到。很多数学史家都认为数学公理化思想的萌芽始自于亚里士多德的著作。(罗素悖论如何解决)。
5、然尔人们只知道罗素悖论是违反了矛盾律,却不知道,这个悖论首先是违反了同一律,才会导致悖论,如果不违反同一律,则没有任何悖论可言。
6、公理化集合系统,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。
7、(注:线段的大集合,由线段构成;而每个线段又是两点之间所有点的小集合。)
8、哥德尔不完全性定理一举粉碎了数学家两千年来的信念。他告诉我们,真与可证是两个概念。可证的一定是真的,但真的不一定可证。某种意义上,悖论的阴影将永远伴随着我们。无怪乎大数学家外尔发出这样的感叹:"上帝是存在的,因为数学无疑是相容的;魔鬼也是存在的,因为我们不能证明这种相容性。"
9、如果你认为数学家是在发现客观真理,那么你就不会接受维氏的分析和解决。如果你认为数学家是在发明主观理论,那么维氏的分析和解决再清楚再简单再合理不过了。
10、然而, 远在欧几里得之前,在古代巴比伦人、埃及人和希腊人那里, 就已产生了公理化思想的萌芽。公元前六世纪时期, 希腊数学的鼻祖泰勒斯(Thales, 约公元前624 – 公元前547)就把逻辑论证引入于数学之中。及至希伯索斯(Hippasus) 发现无公度线段之后, 毕达哥拉斯(Pythagoras,公元前580 — 公元前497) 学派即逐步认识到直观、经验和实践并非绝对可靠,希望对过去由经验而直接得到的几何知识都能够用严格的逻辑推理来加以证明。
11、那么,具体到罗素悖论,如何分析和解决呢?很简单,R是数学家发明构造的,数学家给出的规则对于“R是否属于R”给出了一个矛盾式的规则,相当于没有定义。没有定义起码有三种可能性:缺少定义,重言定义,矛盾定义。
12、至此,著名的罗素悖论就出现了。设A∈A,则A∉A;设A∉A,则A∈A。当不包含自身的集合组成的集合包含自身,则它不包含自身;当不包含自身的集合组成的集合不包含自身,则它包含自身。
13、罗素经过了弗雷格的一番点拨,发现罗素悖论产生的根源在于集合的定义。按康托尔的说法,任何具有一定性质的事物的类都可以构成集合,正是这种概括导致了罗素悖论,因为它所允许存在的“集合”太宽泛了。
14、同济大学数学系.高等数学.上海:高等教育出版社,2012(Citation)
15、罗素悖论:这就是为什么数学不能拥有一个“所有事物”的集合
16、(2)如果A不包括其自身,也没问题。如果A不包括其自身,A当然不会满足“成为A的一个成员”的条件。
17、一个关于数字的无限聚集,比如自然数N=5……应该也是一个集合。
18、即A∈A;A要么不是自身的元素,即A∉A。根据康托尔集合论的概括原则,可将所有不是自身元素的集合构成一个集合S即S1={x:x∉x}。
19、(1)如果A包括其自身,那么很好!A会满足“成为A的一个成员”的条件——包括其自身/自含。
20、所以,我可以定义“不是自然数的‘所有实数’的集合”(thesetofallrealnumbersthatarenotnaturalnumbers),但是我不能制造一个“不是自然数的‘所有东西’的集合”(asetof"everything"thatisnotanaturalnumber)。
21、书中涵盖99个或经典或冷门的思想实验、逻辑悖论、哲学迷思。那些你在浴室里一闪而过的不成形的思考,或者关于人生观、道德观的不方便找人倾吐的困惑,说不定就会在书里找到解答。有兴趣的朋友可以戳下面的小程序卡片购买。
22、数学家的工作与纯逻辑家的工作不同,他们并不只是进行分析与推理,更重要的是进行综合与创造,欧氏几何与非欧氏几何的公理都是综合与创造。当数学家在概念框架内推演定理,他们是在进行分析与推理,这时候比较接近于“发现”。当数学家在给出定义、公理与概念框架的时候,他们是在综合与创造,这时候比较适用于“发明”。
23、...............................
24、尤其,这些公理立即禁止“一个集合成为其自身的一个成员”(即,自含集合)。
25、于是,囚徒心想,让我完全出乎意料是吗?那他们总不能在第七天执行。因为第七天是最后一天,如果我直到第六天都活得好好的,那么我将确切知道行刑日将是最后一天,这与“我猜不到具体日期,完全出乎意料”就相矛盾了。那么第六天就变成了可能行刑的最后一天。但若在第五天没有行刑,刽子手就只剩下第六天这一个选择,囚徒又将确切知道自己将死于第六天,这又与“猜不到具体日期,完全出乎意料”相矛盾。于是第六天也被排除。以此类推,第四……每一天都能被排除。囚徒心想,法官所说的难以预料的行刑日根本是不存在的,看来自己能顺利活下去了。然而,星期二中午,囚徒被押往刑场——这个结果对他来说非常出乎意料。
26、此后,他向各国著名科学家征集签名,召开了世界性会议,商讨采取实际步骤应对由原子武器出现面临的危机。
27、罗素构造了一个集合S:S由一切不属于自身的集合所组成。然后罗素问:S是否属于S呢?如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。也就是说,如果你是一个除了你之外的一个存在,你还是你吗?
28、 1900年前后,在数学的集合论中出现了三个著名悖论,理发师悖论就是罗素悖论的一种通俗表达方式。此外还有康托尔悖论、布拉利—福尔蒂悖论。
29、“披萨”这个词也不是自然数,所以它是集合成员。
30、更形象的例子叫做理发师悖论。在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。当然还有比如“万能的神是否可以创造出自己举不起来的石头”等,都是和理发师悖论等价的。
31、罗素悖论由英国哲学家罗素针对集合论所提出来的一条逻辑悖论,描述为:某些集合是以自身做为元素的,例如所有概念的集合F,其集合自身F也是一个概念,所以该集合F是自身中的一个元素;某些集合是不以自身做为元素的,例如所有苹果的集合G,其集合自身不是苹果,所以该集合G不是自身中的一个元素。由此可知,任何一个集合,要么就是属于自身的,要么就是不属于自身的。现构造出一个集合R,R以所有自身不属于自身的集合作为元素,问:R是属于自身的?还是不属于自身的?如果R是属于自身的,则根据R的定义,R不能做为R中的元素,所以R是不属于自身的;而如果R是不属于自身的,则根据R的定义,R一定是R中的元素,则R是属于自身的,由此构成悖论。
32、 一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”你能说出为什么这场考试无法进行吗?
33、假设你的朋友要给你一个惊喜。你只知道这个惊喜是在周一到周五的任意一天,但不知道是哪一天,那么哪一天算是“惊喜的一天“呢?现在我们设想:如果你周一到周四都没有收到这个惊喜,那么只有可能周五是那个所谓的“惊喜的一天”。不过,既然我们能预测周五是“惊喜的一天”,那它便不能算作是惊喜了。因此,周五不是“惊喜的一天”。好,我们再看。如果你平安无事度过了周一到周那么因为周五已经排除了,只可能周四是那个所谓的”惊喜的一天“,而根据上面的逻辑,这便使周四也不可能是“惊喜的一天”了。以此类推,显然每一天都不能算是”惊喜的一天“。但这样的不可预测性,不又使得每一天都可能是那个惊喜吗?哦天哪,又是悖论,这是人吗?
34、作者AndyKiersz试图展示,罗素悖论是由于“朴素集合论”(naivesettheory)对“集合”的模糊的、过于开放的定义所导致的;“现代公理化集合论”(modernaxiomaticsettheory),通过设定诸种限制,比如摒除“自含集合”(self-containingsets),则可以有效避免罗素悖论。
35、 一个人回到了过去,在他祖母能遇到祖父之前就杀了他的祖父。这就意味着这个人的父母之中有一个不会出生;依次这个人自己也不会出生;这就意味着他没有机会进行时光旅游挥刀过去;这就意味着他的祖父依然还活着;这就意味着这个人能构思回到过去,并杀了自己的祖父。
36、建立现代管理体系是一项长期的、艰巨的任务
37、如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的原则,他就应该给自己刮胡子。
38、有时候,数学的问题,可以在数学之外得到解决。
39、这时候罗素老师重申:这个班里禁止套娃!!!各位集合们,如果你是自己的元素,请离开教室。有的集合这才发现自己是套娃,赶紧告辞。
40、十九世纪俄国年轻数学家H.N. 罗巴切夫斯基Lobatchevsky (1793 — 1856) 认真分析了前人的经验与教训, 大胆地提出一个新观念: 可能会存在第五公设不能成立的新几何系统。在这种思想的指导下, 他一举而创立了罗巴切夫斯基几何学, 简称罗氏几何学, 又称为双曲几何学。
41、 埃庇米尼得斯在一首诗中写道:“克里岛的人,人人都说谎,邪恶的野兽,懒惰的胴网!”然而埃庇米尼得斯自己却是个克里岛人。如果埃庇米尼得斯是一个克里岛人,并且是一个说谎者的话,那么他的诗中所说的“克里岛的人,人人都说谎”就是一个谎话。这就意味着所有的克里岛人都是诚实的人,那么埃庇米尼得斯所言就是实话。那么这个悖论又回到了开始。
42、再比如定义f(x)=1ifx>0;f(x)=-1ifx那个这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)+1ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。如果有人定义了这样一个函数,那么怎么办呢?因此要取消所有的f(x)的意义吗?不用啊,只需要在没有定义(缺少定义,重言定义,矛盾定义)的地方追加定义即可。这就是维氏的解决方案。
43、 有个智者去找神仙,走到一个三岔路口,不知道往左走还是往右。路口边站着两个天使,他俩一个永远说真话,另一个永远说假话,现在要求这个智者只能向其中一位天使问一句话,就确定神仙的方位。请问:这个智者怎么问才能有结果?
44、数学中研究的任何一个客体对象都称为一个类。类的概念是没有任何限制。类与类之间可能存在着一种称为属于的关系,类A属于类B,此时也称类A是类B的一个元素(简称为元)。
45、我们前面讲过欧几里得的几何原本。这部书就是描述欧氏几何。书的开篇就有几大公理和公设。几何原本有5大公理,这五个公理对我们普通人来说,简直就是不用想也应该是对的。第一就是等于同量的量相等,第二是等量加等量其和仍然相等,第三是等量减等量其差相等。第四是彼此能重合的物体是全等的。第五是整体大于局部。这五点,按照我们普通人常识思维肯定是成立的。
46、 回答:最普遍的回答是上帝是全能的,所以“不能举起”是毫无意义的条件。其他的回答指出这个问题本身就是矛盾的,就像“正方形的圆”一样。
47、排除悖论,危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”
48、如果这个集合包含自身(A∈A),那么,因为A是不包含自身的集合组成的集合,即A∈{x∉x},那么A应该不包含自身,也就是说A∉A;
49、而1901年,罗素提出了一个著名的悖论,产生了爆炸性的效果,因为这个悖论植根于集合论,一经提出,相当于从根本上否定了集合论的完备性。
50、公理化方法的形式化,不仅推动着数学基础的研究, 而且还推动着现代算法的研究, 并为数学应用于电子计算机等现代科学技术开辟了新的前景。然而, 含内容的公理学在一定场合下, 仍然是一种有用的数学方法, 它的功效和作用, 是不可能完全为形式化公理方法所代替的。欧几里德的初等几何公理系统, 在当前的中学数学教学中仍然具有重大参考价值。
51、来源:华夏基石e洞察(ID:chnstonewx)
52、罗素悖论之所以在当时的数学界与逻辑界内引起了极大震动,是因为它说明现代数学的基础——集合论——是有漏洞的,这样岂不是一切建立于集合论的数学证明都站不住脚了?可以说罗素悖论的出现,让“数学”这座大楼的地基被动摇了,也难怪会引发数学界的一场重大危机。
53、这个荒谬的结论,就是由一个荒谬的假设引发出来的。)
54、1933 年在法国出现一个以布尔巴基(Bourbaki) (这是法国历史上一位战功卓著的将军) 为笔名的青年数学家集团,他们用结构主义观点, 写成一本皇皇巨著《数学原本》,从1939 年到1983年, 已经出版40册。从本质上来说, 结构主义乃是形式化公理方法在方法论上的新发展, 形式化公理方法是着眼于探讨每个数学分支的公理化, 而结构主义则是着眼于探讨整个数学大厦的公理化, 他们先从全局上来分析各个数学分支之间的结构差异和内在联系, 然后再对每门数学深入分析其基本结构的组成形式。与形式化公理方法相比, 结构主义则是对数学理论的更高一步、更深一层的抽象和概括。这样做不仅有助于发掘各个数学理论之间的内在亲缘关系, 解除数学理论之中的非本质界限, 而且有助于扩大数学理论的应用范围。
55、有一本书叫《创新者的窘境》,提出了一个让大企业困惑的悖论,全书就是在阐述这个悖论和试图回答这个悖论:大公司之所以被颠覆不是因为他们管理不善,而是因为他们管理的太优秀了!那我们到底该不该管理优秀?该不该管理卓越?要不要追求管理卓越?这个悖论对一些企业的冲击很大,以至于华为多次内部各种讨论的时候,主题自然的都是聚焦在颠覆式创新的问题上来了。以至于华为人都在讨论该如何应对颠覆性创新,相反,人力资本管理问题倒显得地位次要了。最后还是任总站出来稳定军心。任总写了篇文章,认为宝马是不会被颠覆,他在文章中称,“大多数人认为,特斯拉汽车是颠覆性创新的代表,未来肯定会超越宝马。但我认为,只要宝马采取开放性的改革提升自身,也不一定会输。”这个世界上充满悖论,管理中也充满悖论。悖论本来是一个哲学上一个持续关注的问题,昨天就在想这个事儿,像罗素悖论:“理发师的头谁来理?”如果理发师的头自己来理,这个悖论前提就被推翻了。如果理发师不给自己理,不给自己理发,他的头应该是谁来理?哲学上类似的悖论还有很多,“万能的上帝能不能创造一块他自己举不起来的石头?”,“神能造出方形的圆形吗?”,“神能把对的看成错的吗?”,“神能找到一件他做不到的事吗?”……有一次,柏拉图把自己假装成守桥人,让苏格拉底回答一个问题,说你要是回答正确我就让你过桥,回答不正确我就把你扔到水里面去。苏格拉底回答:你把我扔到水里面去。悖论就出来了:如果判定苏格拉底说对了,就应该让他过去;如果判定苏格拉底回答错误而将其扔进到水里,那回答又是正确的。这些在哲学上很有意思的悖论问题,现在困扰着管理学家。这提出的根本问题是:企业还要不要持续的改善管理?科学管理还有没有用?未来市场和企业谁代替谁?刚才听了文跃然教授的演讲,文教授几十年一直从事人力资源管理教学,还创办了几年公司,用自己的经营管理实践告诉大家企业要回归科学管理,要用科学管理去解释人力资源管理的本质。这个也是悖论:如果科学管理能够解释人力资源管理的本质,要人力资源管理干什么?如果人力资源管理不能够解释这些问题,要科学管理干什么?所以,管理现在不断地面临这些矛盾和这些悖论。因此,互联网思维也好,创新者的窘境也好,它提出的根本问题是:企业还要不要持续的改善管理?科学管理还有没有用?未来市场和企业谁代替谁?这个问题涉及到企业和市场的关系,让我们回到罗纳德·科斯提出的两个基本问题:“如果通过企业可以消除某些成本,那为什么还会有市场交易?”反之亦然,“如果价值体系能够决定资源分配,为什么需要企业来承担建立和运转这种行政机构的成本呢?一个视角的改变,就改变了整个世界。你不是主张自由市场吗?你不是主张看不见的手吗?看不见的手如果可以解决问题那还要企业干什么?所以,两个问题都归结到一个本质上的问题,就是讲市场和企业要看到两种可以相互替代的组织形式。这个里面关键是交易成本。谁的交易成本更低,谁就替代另外一个。不确定性时代企业的生存之道:用互联网降低企业的外部交易成本;用互联网和科学管理降低企业的内部交易成本。按照科斯交易成本理论我们再来看看互联网,互联网向企业提出的根本问题是什么?互联网企业是降低了市场交易成本还是降低了企业内部交易成本?互联网时代企业内部交易成本还能否低于市场交易成本?还有没有可能低于市场成本?互联网时代企业存在的理由,就是你的交易成本要低于市场交易成本。因此,互联网时代企业的生存之道就是很简单了:用互联网降低企业的外部交易成本;同时,用互联网和科学管理降低企业内部交易成本。这个就是互联网企业生存之道。我们也不要去搞那么多互联网思维,所有的争论最终回归到一个问题,是谁替代谁的问题。这个就是华为的互联网思维,这个就是华为的互联网解决之道。这个也是今天华为还在向“蓝血十杰”学习的原因。说到底,就是要在互联网时代通过科学管理,通过运用互联网进一步降低企业内部运作成本,内部交易成本,这样才能够在互联网时代生存下去。
56、非欧几何学的建立, 不仅为公理化方法的进一步发展奠定了基石, 而且为新数学理论的发现提供了先例。
57、发明“集合论”(settheory)的人同样如此,他们从一个相当模糊的“集合”概念出发,而这种模糊导致了一些严重问题。
58、接着,夜班经理这样安排在第一个超级大巴上的客人:以下一个质数3为底数,以他们在大巴的座位号为指数来分配房间。以此类推,第n号大巴上的第m个客人将会分配到pn+1m号房间(pn+1指第n+1个质数)。这样分配就可以将所有人住进旅馆了。甚至,你还会发现很多房间会是空的(所有编号不是质数的幂的房间)。
59、庄朝晖,基于对角线引理和维特根斯坦思想对于悖论的分析,第六届全国分析哲学学术研讨会,山西大学,中国,2010年8月(入选《中国分析哲学2010》,中国现代外国哲学学会分析哲学专业委员会编,浙江大学出版社,2011年10月,67页-76页)
60、看其结论附加,2=“教皇和罗素是1 个人”,并不能推出“罗素就是教皇”,而是推出“教
61、罗素的天才在于他能把人的逻辑思维非常简明的描绘出来,所以后人也把罗素称为逻辑大师。同时罗素又被人赞为哲学家,这在数学家中并不多见(可能只有笛卡尔有哲学家的称号)。哲学家的厉害之处,在于用简明的语言点出了深奥的人生道理,让你不得不佩服。罗素把数理逻辑发展成了一门哲学学科,足见他功底之深。
62、理发师悖论可以表达成集合论的形式,就是罗素悖论。R={x|x不属于x},然后现在问R是否属于R。如果R不属于R,那么根据定义,R属于R;如果R属于R,那么根据定义,R不属于R。
63、60年代后期,猛烈攻击美国的越南政策,并与法国存在主义者让.保罗.萨特等人组织了国际战争罪犯审判法庭。
64、 回答:当时间旅行者改变了过去的某事的瞬间,那么平行宇宙就会被切开,这个可以由量子力学来解释。
65、维特根斯坦反复强调:“数学家不是发现者,而是发明者。”,又说“数学家一直在发明新的描述形式。有的人受实际需要的刺激,另一些人出自审美需要,还有些人以其他种种方式。”
66、但是他自己并不知道他跟别人不一样,别人看到的天空是蓝色的,他看到的是绿色的,但是他和别人的叫法都一样,都是“蓝色”;小草是绿色的,他看到的却是蓝色的,但是他把蓝色叫做“绿色”。所以,他自己和别人都不知道他和别人的不同。第一问:怎么让他知道自己和别人不一样?第二问:你怎么证明你不是上述问题中的主人公?
67、似几个罗素悖论,都暴露出一点,罗素的问题在于用数量去取代事物的质,而对于一个事物,
68、1950年,因活跃于世界和平运动舞台,特别是坚决反对核战争,其作品《哲学问题》获“诺贝尔文学奖”。
69、同时,我们对于下述建构也要谨慎得多,比如“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。