1、此后,整个欧洲的实验室都动员起来,去寻找门捷列夫所预言的新元素,振奋人心的消息也一个接着一个。这也意味着,原本较盲目的元素的研究、新元素的探索,都将变得有迹可循。门捷列夫在整个欧洲科学界的地位也节节高升。
2、1893年2月,曾在氯化学以及发明和应用高温电炉方面作出过重大贡献的法国化学家莫瓦桑,向科学界和新闻界报告了一项重大科学成果:他和助手共同努力,制成了世界上第一颗人造金刚石,终于实现了人们梦寐以求的将平凡的石墨转化为昂贵的金刚石的夙愿,从而打通了“点石成金”的道路。
3、初高中化学衔接资料合集(教材+作业+学案+实验+课件)(门捷列夫诺贝尔奖)。
4、▲“疯子”优必选,做了一件“暴露”野心的事
5、与其说门捷列夫没有获得诺贝尔奖是理论输给了实践,倒不如说他败给了一粒小钻石,败给了世人对科学家莫瓦桑的盲目崇拜!
6、创新变革学习方式,如综合主题学习、跨学科融合学习、探究式学习、项目式学习、问题导向式学习、团队合作学习、人工智能辅助学习、网络自由学习(how);
7、 九年级化学说课稿、教案、导学案(上下册全套)
8、左:钻石(图源:pixabay.com);右:石墨(图源:wikipedia)
9、既然金刚石在真空中加强热可以转变为石墨,那么就意味着石墨也应该可以在一定条件下转变成金刚石啊!用一文不值的石墨制取价值连城的金刚石,这将产生多大的利润?真得是做梦都会笑醒啊!
10、莫瓦桑(图源:nobelprize.org)
11、今天,2019年诺贝尔化学奖也揭晓了。瑞典皇家科学院宣布,授JohnB.Goodenough,M.StanleyWhittingham和AkiraYoshino三位科学家2019年诺贝尔化学奖。瑞典皇家科学院表示,这对他们在锂离子电池方面做出的贡献进行表彰。
12、弗雷德里克·格兰特·班廷:1923年,加拿大医学家弗雷德里克·格兰特·班廷获得了诺贝尔生理学或医学奖,当时年仅32岁,他取得的成就是发现胰岛素。
13、今天我就和各位朋友们说一说莫瓦桑制取人造金刚石的过程,这里面的故事曲折离奇,让人惊叹不已。
14、扫码免费订阅《摩贝视野》杂志,最新最热不再错过
15、那么,这种不正常的而且过度的放射性又是从哪里来的呢?用这些沥青铀矿中的铀和针的含量,决不能解释她观察到的放射性的强度。
16、令所有人没有想到的是,莫瓦桑的助手却向他们讲了一个惊天秘密。原来,由于莫瓦桑坚信自己设计的第二种制取金刚石的方案是“完美的方案”,他就和助手开始了一次又一次的实验,但毫无例外的都失败了。助手就劝他放弃这个实验,很可能方案在理论是就是错误的。但偏执的莫瓦桑根本不理睬助手的建议,只是催促他继续改变条件,继续进行实验。助手的耐心在这一遍又一遍的失败中被消磨殆尽,他觉得这简直就是浪费时间,而莫瓦桑看上去好像不达目的是不会罢手的。就在这痛苦的反复折磨之后,助手毅然决定拿出自己毕生的积蓄买了一颗很小的金刚石。
17、DDC全部课程体系,点击下面链接即可了解课程详情
18、弗里茨·哈伯从空气中制造出氨,使人类从此摆脱了依靠天然氮肥的被动局面,加速了世界农业的发展。然而,他即是给人类带来丰收的天使,也是给人类带来痛苦和死亡的魔鬼。弗里茨·哈伯在一战中担任化学兵工厂厂长,研发了氯气、芥子气等战争武器,近百万人死于此。
19、诺贝尔委员会有一条硬规则:不能颁发给过世的人。不过这一规矩也被意外打破了。2011年,拉尔夫·斯坦曼(RalphM.Steinman)因“发现树枝状细胞及其在获得性免疫中的作用”,而被授予诺贝尔医学奖。但不幸的是,拉尔夫·斯坦曼在诺贝尔奖颁发的前三天死于胰腺癌。
20、吉野彰(AkiraYoshino)以Goodenough的阴极为基础,于1985年创建了首个商业上可行的锂离子电池。他没有在阳极中使用反应性锂,而是使用了石油焦炭,这种碳材料像阴极的氧化钴一样可以嵌入锂离子中。结果是重量轻,坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。
21、StanleyWhittingham致力于开发可能导致无化石燃料的能源技术的方法。他开始研究超导体,并发现了一种能量非常丰富的材料,他将其用于在锂电池中创建创新的阴极。它是由二硫化钛制成的,该二硫化钛在分子水平上具有可以容纳(嵌入)锂离子的空间。电池的阳极部分由金属锂制成,金属锂具有强烈的释放电子的动力。这产生了一个电池,实际上具有很大的潜力,刚好超过2伏。但是,金属锂具有反应性,电池爆炸性太大,无法使用。
22、1869年,门捷列夫制定出元素周期表,它是宇宙的基本规律之也为人类认识自然提供了一把刻度精准的尺子。1906年,门捷列夫获得诺贝尔化学奖提名。但由于一部分评委认为“难以评价元素周期表在理论上由谁发现”,门捷列夫以一票之差,输给了制备出单质氟的法国化学家莫瓦桑。第二年,门捷列夫就因病逝世了。
23、文学评价可能缺乏一个统一的标准,评委的口味也不尽相同,但即便是各科学奖项,在诺贝尔奖历史上,也有不少错误甚至灾难性的选择,比如颁给了错误研究成果和微不足道的小发明、遗漏了伟大发现的真正英雄、科研成果危害人类、性别歧视⋯⋯而这些事情,直到现在还在发生。
24、诺贝尔奖不授予已去世的人,但诺贝尔基金会的规则特别说明:如果有人获奖但在领奖前死亡的话,奖项仍然有效。这种情况在诺贝尔奖的历史上还是首例。
25、1962年的诺贝尔生理学奖颁给了沃森、威尔金斯、克里克,在他们发表的文章中也未曾对富兰克林表示感谢,而富兰克林在1958年就已经因癌症逝世。
26、1868年的冬天,门捷列夫决定搁下教材的编写工作,全力以赴投入探索元素间规律的研究。他天天独自坐在他那高大的写字台前,苦苦思索着,计算着。为了摸索元素间的内在联系,他用硬卡纸制了63张扑克牌似的卡片,每张卡片写上一种元素的化学符号、性质和原子量。然后,他玩起这些“纸牌”来。他想按原子量的大小把卡片排成一张表,就像打扑克一样,一会儿排齐,一会儿分开,不断地调换着桌子上纸牌的位置,已然到了走火入魔的地步。
27、感谢阅读,为读到这里的你鼓掌!请继续!后面更精彩!
28、在1893年又一次失败的实验之后,趁莫瓦桑不注意,助手将他买的那颗小钻石扔到了反应容器之中,然后就有了我们之前所提到的那些故事。真想大白了,原来莫瓦桑根本没有制得人造金刚石,这一切都像是上天和他开得一个玩笑。
29、⦁物质及其相互作用、波及其在信息传递技术中的应用
30、不料门捷列夫起身走到那张演示实验的大桌子前,从怀中掏出一副纸牌,排起“牌阵”来。众人无不吃惊,都以为堂堂大学教授,竟在全国性的学术会议上开这种玩笑。只见门捷列夫将那副牌一会儿便排出一个牌阵来,众人上前一看,方知每张牌上写的是一种元素的名称、性质、原子量等,共是63张牌,代表着当时已知的63种元素。大家瞧着牌阵,都如进入云里雾中,看不出什么名堂来。
31、1906年,诺贝尔化学奖的评选工作已经来到了最后的关键阶段,有两位化学家成为了最终的候选人。
32、1912年,万众瞩目的诺贝尔物理学奖花落名不见经传的瑞典工程师尼尔斯·达伦(NilsDalén),这让让科学界一片哗然。达伦发现了一个利用不同颜色金属片在光照下受热膨胀不均的特性来调控海上无人值守乙炔灯塔开关的装置,虽然这项发明给瑞典的航运事业带来了便利也给发明家本人带来了财富,但这样的成果对于同时代获得诺奖的工程技术来说实在微不足道。
33、诺贝尔大会称:诺贝尔委员会正式把诺贝尔医学奖的荣誉授予斯坦曼三小时之后,才获悉他去世的消息。斯坦曼所在大学的官员为他编撰获奖信息的时候,从其家人那里得知了这个噩耗。
34、我们都熟悉,心脏、大脑、骨骼……这些都可以通过核磁共振成像观察到细节,从而可以帮助医生做出诊断。恩斯特因在核磁共振成像方面的巨大贡献,获得了1991年的诺贝尔化学奖。
35、但是,同法国物理学家皮埃尔·居里先生的相识、相恋和成为终身伴侣,彻底改变了她原来的计划,她只好侨居法国,并于1897年生了一个可爱的女儿。
36、莫瓦桑也是一名多产的化学家,他的一生对科学的贡献不计其数,他凭借着多项重大发现和发明而名震欧洲。
37、科学奖和医学奖已证明很少引起争论;而文学奖与和平奖,则因其本身性质特殊,最易导致意见分歧。和平奖则常常保留。
38、门捷列夫遗憾地与1906年诺贝尔化学奖失之交臂。更为令人遗憾的是,1907年门捷列夫就因病逝世了,不知道这与上一年憾失诺贝尔奖有没有关系,他失掉了再次被评选的可能,这不能不说是诺贝尔奖历史上一次重大遗憾。
39、罗莎琳德·富兰克林(RosalindFranklin)也是诺贝尔奖史上一个悲惨的故事。上世纪50年代,这位英国物理化学家与晶体学家,用X射线测晶法获得了DNA的第一张晶体衍射图片“照片51号”。然而当时的科研环境,对女科学家的歧视处处存在,富兰克林的领导威尔金斯在富兰克林不知情的情况下将照片给了实验室另外两位科学家詹姆斯·沃森(JamesWatson)和佛朗西斯·克里克(FrancisCrick),根据照片,他们推出了DNA的双螺旋结构。1962年的诺贝尔生理学奖颁给了沃森、威尔金斯、克里克,在他们发表的文章中也未曾对富兰克林表示感谢,而富兰克林在1958年就已经因癌症逝世。
40、鲁超:(元素家族-连载241)人造元素之王zhuanlan.zhihu.com
41、的候选人在1906年又以一票之差无缘诺贝尔奖,1907年门捷列夫告别人世,给诺贝尔奖留下了无
42、1974年,英国剑桥大学的赖尔(MartinRyle)和休伊什(AntonyHewish)拿下了当年的诺贝尔物理学奖,赖尔获奖是由于他的观测和发明,特别是综合孔径技术的发明;休伊什则是由于他在发现脉冲星过程中所起的决定性作用。
43、门捷列夫遗憾地与1906年诺贝尔化学奖失之交臂。更为令人遗憾的是,1907年门捷列夫就因病逝世了,不知道这与上一年憾失诺贝尔奖有没有关系,他失掉了再次被评选的可能,这不能不说是诺贝尔奖历史上一次重大遗憾。
44、举目无亲又无财产的门捷列夫把学校当作了自己的家,为了不辜负母亲的期望,他发奋地学习,1855年以优异的成绩从学校毕业。但由于被诊断出有肺结核,不得不到黑海边上的克里米亚半岛休养。在此期间,门捷列夫读完了硕士,并于两年后回到圣彼得堡。期间先后到过辛菲罗波尔、敖德萨担任中学教师。1857年他被圣彼得堡大学破格任命为化学讲师,是当时最年轻的副教授。
45、他发明了“莫式电炉”,并熔炼了钨、钛、钼、钒等高熔点金属;
46、诺贝尔化学奖虽然看上去“高大上”,但其研究成果并不“高冷”。百余年来,不少诺奖成果已经惠及你我生活。
47、每到夜晚,五颜六色的霓虹灯就会点亮城市。霓虹灯是靠充入玻璃管内的低压惰性气体,在高压电场下冷阴极辉光放电而发光。1904年,拉姆赛因发现6种惰性气体,并确定它们在元素周期表中的位置获得诺贝尔化学奖。
48、1903年,居里夫妻俩(玛丽·局里和皮埃尔·局里)获得诺贝尔物理学奖;
49、 2020高考化学突破二轮复习(课件+教师用书+专题集训)
50、1906年,莫瓦桑凭借着自己在科学领域多项惊人的发现,成功击败门捷列夫,登上了科学之巅——获得了诺贝尔化学奖。
51、这件事情当然遗憾,但如果我们查阅一下1906年、1907年、1908年诺贝尔化学奖得主穆瓦桑、毕
52、卡尔·安德森:1936年,美籍瑞典裔物理学家卡尔·安德森获得了诺贝尔物理学奖,当时年仅31岁,他取得的成就是发现正电子。
53、②他发明了“莫式电炉”,并熔炼了钨、钛、钼、钒等高熔点金属;
54、1772年,被誉为“近代化学之父”的拉瓦锡对钻石产生了兴趣。他把钻石放置于高温中加热至火红,发现钻石竟然燃烧了。
55、③莫瓦桑最引以为自豪的“创举”——用石墨制得了世界上第一颗人造金刚石。而正是这颗人造金刚石,使门捷列夫失去获奖的机会。
56、一共颁发了107次,其中1915年、1916年、1917年、1918年、1921年、1925年、1940年、1941年和1942年没有颁奖。
57、提到被证实不严密、甚至是错误的诺贝尔奖颁发,就不得不提到额前叶切除术。1949年,华尔特·赫斯(WalterRudolfHess)和安东尼·莫尼斯(Antonio Moniz)因“发现了脑白质切断术对某些精神疾病的治疗价值”而获得了1949年的诺贝尔生理学与医学奖。他们提出了用脑前额叶切除术来治疗精神分裂症,由此美国的神经外科医生每年对数以千计的患者实施了脑前额叶切除手术,而其中一些患者产生了可怕的负效应,许多病人失去方向感或行为能力,成为植物人甚至死亡。这种治疗方法已于1960年被普遍废弃。
58、因此,只能有一种解释,这些沥青矿物中含有一种比铀和针的放射性作用强得多的新元素,而且不是当时人类所已经知道的元素,它一定是一种未知的元素。
59、罗莎琳德·富兰克林(RosalindFranklin)也是诺贝尔奖史上的悲剧人物。上世纪50年代,这位英国物理化学家与晶体学家,用X射线测晶法获得了DNA的第一张晶体衍射图片“照片51号”。
60、晶体管的发明是20世纪中叶科学技术领域有划时代意义的一件大事,它的诞生使电子学发生了根本性的变革。1956年诺贝尔物理学奖授予美国科学家的肖克利(WilliamShockley)、巴丁(JohnBardeen)和布拉坦(WalterBrattain),以表彰他们对半导体的研究和晶体管效应的发现。但肖克利可能并不够资格拿下这届诺贝尔物理学奖,他发明了一种错误的晶体管,而实验的成果是由另两名科学家完成的。
61、在诺贝尔化学奖的获奖历史上,只有英国生物化学家FrederickSanger曾两次获奖。在1958年,他因开发了蛋白质化学结构的测量方法并测定了胰岛素的氨基酸序列获得第一个诺贝尔化学奖;后在1980年,他因发明了测定DNA序列的双脱氧链终止法获得了第二个诺贝尔奖,人类基因组计划用到了这一方法,因此他常被称为基因组学之父。
62、莫瓦桑是氟方面的专家,他想先利用单质氟与石墨反应,使之转变为氟碳化物,再利用方法除去氟,但这种实验方案很快就被否定了。莫瓦桑又设计了第二种实验方案:将石墨投入熔化的铁水之中,再将掺有石墨的铁水倒入冷水之中,让之急速冷却,让石墨结晶成金刚石,然后再用酸溶去多余的铁。
63、2008年,两位法国科学家西诺西(FrancoiseBarre-Sinoussi)和蒙塔尼(LucMontagnier)“因发现人类免疫缺陷病毒”而获诺贝尔医学奖,这使许多科学家感到有点意外。意外的不是两位法国科学家的获奖,而是另一位为“发现人类免疫缺陷病毒”做出重大贡献的美国科学家罗伯特·盖洛(RobertGallo)未在授奖名单里。发现艾滋病病原之争是科学史上科学发现优先权之争的典型案例,盖洛是人类逆转录病毒研究的先驱,他第一个分离出人逆转录病毒-人T细胞白血病病毒HTLV,并建立了体外培养人T细胞的方法,这是研究人T细胞逆转录病毒的基础。超过100名科学家共同签署了反对意见,刊登在了《科学》杂志上,以抗议盖洛被诺贝尔奖委员会忽视。
64、在条件极其简陋的实验室里,经过居里夫妇锲而不舍的长期努力,1898年7月,他们宣布发现了这种新元素,它比纯铀放射性要高出400倍。
65、后来,莫瓦桑的遗孀终于良心发现,如实揭穿了其中的秘密。原来,莫瓦桑的人造金刚石是假的。导演这场闹剧的是莫瓦桑的助手。这是一个对科学研究缺乏毅力和信心的人,在无休止的、繁重的重复实验中,他感到极端的厌倦和烦恼,于是就偷偷地把过去实验剩下来的一颗天然金刚石颗粒混入实验材料中,而莫瓦桑还以为他真的以人工方法造出了钻石呢!
66、2018全国同课异构总决赛高中化学冠军赛课件
67、2014年诺贝尔物理学奖被授予了日本科学家赤崎勇、天野浩和美籍日裔科学家中村修以表彰他们发明了蓝色发光二极管(LED),并因此带来的新型节能光源。但科学界不少人质问,为什么不颁发给尼克·赫伦亚克(NickHolonyak)呢,他在1962年就发现了发光二极管。当时尼克·赫伦亚克只是美国大厂通用电气公司的一名普通研究人员,打造出了第一颗红光LED,而且他还认为未来能够发出其他波长的光,意味著LED将有很多种不同的颜色光,未来白炽灯一定会被LED取代掉。
68、江湖路远,在他面前,连巴斯夫都要叫他一声大哥!
69、居里夫人的发现吸引了皮埃尔先生的注意,居里夫妇携起手来,并驾齐驱,向科学的未知领域发起强有力的进攻。
70、晶体管的发明是20世纪中叶科学技术领域有划时代意义的一件大事,它的诞生使电子学发生了根本性的变革。1956年诺贝尔物理学奖授予美国科学家的肖克利(WilliamShockley)、巴丁(JohnBardeen)和布拉坦(WalterBrattain),以表彰他们对半导体的研究和晶体管效应的发现。但肖克利可能并不够资格拿下这届诺贝尔物理学奖,他发明了一种错误的晶体管,而实验的成果是由另两名科学家完成的。
71、①他用电解法制取了世界上最活泼且毒性很大的非金属单质——氟。单质氟的制取过程充满了艰辛,历经70余年,无数科学家为之付出了辛勤的血汗,有些科学家甚至为之献出了生命,最终这座元素的高峰被莫瓦桑征服,但他也付出了惨痛的代价,他经常在进行实验的过程中因中毒而被迫中断,身体刚恢复一点,又重新地投入到制取氟的工作中来。正是这种顽强而近乎于偏执的精神,才使得他征服了整个自然界中“最不听话”的元素,使得人们可以一窥单质氟的真面目。他曾经对友人说过,单质氟至少夺走了他10年的生命;
72、从以往诺贝尔化学奖得主的名单可以看出,不少获奖者的获奖成就并非出自传统的化学研究,而是涉及生物学、物理学等多重学科,因此诺贝尔化学奖也被调侃为“理科综合奖”。如,1908年,英国物理学家卢瑟福因“对元素蜕变以及放射化学的研究”,荣获诺贝尔化学奖。
73、合成肥料对现代农业的发展功不可没,这是为什么德国化学家弗里茨·哈伯(FritzHaber)获得1918年诺贝尔化学奖的原因。
74、高中化学各版本(人教版、鲁科版、苏教版)全套电子课本
75、的影响,从而造成“对理论的恐惧”直接有关。事实上,人世间任何一样奖项,要想“通过一个
76、莫瓦桑最引以为自豪的“创举”——用石墨制得了世界上第一颗人造金刚石。
77、然而当时的科研环境,对女科学家的歧视处处存在,富兰克林的领导威尔金斯在富兰克林不知情的情况下将照片给了实验室另外两位科学家詹姆斯·沃森(JamesWatson)和佛朗西斯·克里克(FrancisCrick),根据照片,他们推出了DNA的双螺旋结构。
78、第二年,莫瓦桑因病去世,人们期望他的发现能尽快转化为实用的生产技术。因此,一些人便按照莫瓦桑的设计去重复试验。但是尽管人们严格按照莫瓦桑的设计去做了许多次,却从未获得成功。于是,人们开始对莫瓦桑的“成果”产生怀疑。
79、1893年,在又一次失败的实验之后,趁莫瓦桑不注意,助手将他买的那颗小钻石扔到了实验残渣中。。。
80、1995年诺贝尔化学奖授予保罗·克拉兹、马里奥·莫林和舍伍德·罗兰,表彰他们在平流层臭氧化学研究领域所做出的贡献,特别是提出了平流层臭氧受人类活动的影响问题。他们的研究引起了世界各国对臭氧层的关注,促使国际上对保护臭氧层问题及时采取了一致的行动。减少氟排放成为共识。如今我们生活中使用的冰箱很多就已经是无氟冰箱。
81、门捷列夫遗憾地与1906年诺贝尔化学奖失之交臂。更为令人遗憾的是,1907年门捷列夫就因病逝世了,不知道这与上一年憾失诺贝尔奖有没有关系,他失掉了再次被评选的可能,这不能不说是诺贝尔奖历史上一次重大遗憾。
82、中学毕业后,他母亲变卖家产,带着门捷列夫四处求学,先后到过莫斯科、柏林和巴黎。因他不是出身于豪门贵族,又来自边远的西伯利亚,许多大学都对他拒之门外。终于,门捷列夫考上了医学外科学校。然而当他第一次看到尸体时,就晕了过去,无奈只好改变志愿。1850年,通过父亲同学的帮忙,门捷列夫进入了亡父的母校———圣彼得堡高等师范学校,就读物理数学系。同年9月,他母亲也因患结核病去世。
83、1869年2月14号,那是星期五早上,门捷列夫三天没睡一直在想卡片的排列规律,想着想着支撑不住就睡着了,睡着之后,他好像做了一个梦,在梦里他还在玩扑克牌找化学元素的规律,突然,他好像看到一个更完整、圆满的周期表。他兴奋地顾不得睡觉了,赶紧睁开眼,根据记忆把梦里的元素周期表在扑克牌画了出来,并重新摆好了。当接连不上时,他判断该位置的元素应该是还未被发现,就在相应位置预留一张空牌,他一共预言了11种未发现元素,加上已经发现的63个元素,这样整副牌就达到了74张,这也是元素周期表的雏形,它像一幅地图,在这个表里所有化学元素都一目了然。
84、其实在此之前,有关探索元素周期律的记载多达几十处。
85、其中一位便是因为编制了元素周期表而名震欧洲科学界的俄罗斯化学家门捷列夫。当时瑞典皇家科学会中有10名委员具有投票资格,其中有4人投给了门捷列夫,1人弃权,而其余5人则投给了另外一名候选人。
86、没有得奖,无论如何应该说是一件诺贝尔奖史上的大憾事,我们为此而惋惜。
87、▲刚刚,联想发布了近20款SIoT产品,杨元庆的野心都在这里了
88、玛丽亚·斯可罗多夫斯卡娅,即著名的居里夫人,1867年11月7日诞生于波兰华沙的一个书香门第之家。父亲是大家的物理教授,母亲是钢琴家。玛丽亚具有父亲的智慧和母亲的灵巧,从小就对科学实验发生了浓厚的兴趣。
89、当时,虽然人们已经知道,金刚石是在地壳深部高温高压下,由无定形碳变化而成,但许多人试验合成金刚石都未获得成功。这回听说莫瓦桑合成了人造金刚石,无不震惊。这一“成果”轰动了整个科学界,人们为之振奋,莫瓦桑本人更是兴高采烈,陶醉在“成功”的喜悦之中。
90、诺贝尔奖的发奖仪式都是下午举行,这是因为诺贝尔是1896年12月10日下午4:30去世的。为了纪念这位对人类进步和文明作出过重大贡献的科学家,在1901年第一次颁奖时,人们便选择在诺贝尔逝世的时刻举行仪式。
91、无何厚非,前人的研究成果为门捷列夫发现化学元素周期表奠定了基础。
92、于是,莫瓦桑就和助手开始了一次又一次、一次又一次的制取人造金刚石的实验。他们不断地失败,然后不断改变条件,再进行不断地重做,莫瓦桑这种近乎于偏执的性格支撑着他一遍又一遍的实验。皇天不负有心人,1893年的一天,莫瓦桑与助手又一次的完成了他们早已重复多遍的实验。此时的他们早已失去了刚开始进行实验时的那种激动焦灼的心情,他们的内心波澜不惊,这次的实验看上去和以往也没有什么太大的不同。可就在他们小心翼翼的清理着实验留下的暗黑色残渣时,眼尖的助手突然发出了怪叫,原来在这些暗黑色的物质中有一个亮晶晶的东西在闪闪发光——一颗直径0.7mm的钻石,一颗真正意义上的人造钻石。
93、学过化学的人都知道,元素周期表对于化学这门学科的重要意义。应该说,没有元素周期表就不会有现代化学的今天;没有元素周期表,化学就不可能成为自然科学中的一门支柱学科;没有元素周期表,化学仍然是前人经验的总结,缺少系统性和理论性。既然元素周期表对于化学有如此重要的作用,那么对于编制周期表做出过决定性贡献的门捷列夫理应获得化学界的最高荣誉,究竟是谁“夺走”了属于门捷列夫的诺贝尔奖呢?